Senin, 03 November 2014

Bentuk Umum dan Sifat Parabola

Kurva fungsi kuadrat y = f( x ) = ax2 + bx + c, a tidak sama dengan nol ( 0 ) berbentuk parabola.


Jika nilai a > 0 maka parabola terbuka ke atas dan mempunyai nilai ekstrem minimum

Jika nilai a < 0 maka parabola terbuka ke bawah dan mempunyai nilai ekstrem maksimum


Koordinat titik puncak / titik ekstrem / titik stationer / titik balik parabola adalah ( Xp , Yp ) dengan :











 
Xp = absis ( x ) titik puncak = sumbu simetri = absis ( x ) saat mencapai nilai maksimum/minimum
Yp = ordinat ( y ) titik puncak = nilai ekstrem/nilai stationer/nilai maksimum/nilai minimum



B. Sketsa Grafik Fungsi Kuadrat / Parabola

Langkah-langkah dalam membuat sketsa grafik fungsi kuadrat/parabola ( = ax2 + bx + c ) :

1. menentukan titik potong grafik dengan sumbu x → y = 0


kemudian difaktorkan sehingga diperoleh akar-akarnya yaitu x1 dan x2 . jika kesusahan dalam memfaktorkan coba di cek dulu nilai D nya....

jika D < 0 maka fungsi tersebut memang tidak mempunyai akar-akar persamaan fungsi kuadrat sehingga sketsa grafik fungsi kuadrat tidak memotong sumbu x

jika D > 0 maka fungsi tersebut mempunyai akar-akar persamaan fungsi kuadrat namun kita kesulitan dalam menentukannya... bisa jadi karena angkanya yang susah difaktorkan atau faktornya dalam bentuk desimal. Akar-akarnya dapat kita cari dengan rumus abc :



setelah kita mendapatkan nilai x1 dan x2 maka titik potong grafik fungsi kuadrat dengan sumbu x :
( x1 , 0 ) dan ( x2 , 0 ) 

2. menentukan titik potong grafik dengan sumbu y → x = 0karena x = 0 maka y = c dan titik potong dengan sumbu y = ( 0 , c )

3. menentukan sumbu simetri ( xp ) dan titik ekstrem ( yp )
dari penentuan sumbu simetri ( xp ) dan nilai eksterm   ( yp ) diperoleh titik puncak grafik fungsi kuadrat/parabola : ( Xp , Yp )


Posisi grafik fungsi kuadrat/parabola terhadap sumbu x
mengulang pembahasan mengenai titik potong sumbu x → y = 0 ada 3 kemungkinan :

D > 0 grafik fungsi kuadrat memotong sumbu x di dua titik
D = 0 grafik fungsi kuadrat menyinggung sumbu x di satu titik
D < 0 grafik fungsi kuadrat tidak memotong sumbu x

dengan menggabungkan dengan nilai a nya dapat dibuat sketsa grafik fungsi kuadrat/parabola :



C. Persamaan Fungsi Kuadrat / Parabola

1. Diketahui tiga titik sembarang

Rumus : y =  ax2 + bx + c 

nilai a, b dan c ditentukan dengan eliminasi.



2. Parabola memotong sumbu x di dua titik ( x1 , 0 )dan ( x2 , 0 ) dan melalui satu titik sembarang.


 Rumus : y = a ( x - x1 ).( x - x2 )

nilai a ditentukan dengan memasukkan titik sembarang tersebut ke x dan y.



3. Parabola menyinggung sumbu x di satu titik ( x1 , 0 ) dan melalui satu titik sembarang.

Rumus : y = a ( x - x1 )2
nilai a ditentukan dengan memasukkan titik sembarang tersebut ke x dan y.




4. Parabola melalui titik puncak ( xp , yp ) dan melalui satu titik sembarang.

Rumus : y = a ( x - xp )2 + yp
nilai a ditentukan dengan memasukkan titik sembarang tersebut ke x dan y.




D. Hubungan Kurva Persamaan Kuadrat / Parabola dan Persamaan Garis Lurus


Minggu, 02 November 2014

CONTOH SOAL SUKU BANYAK Beserta Jawaban

1) F(x) = 3x3 + 2x − 10.
Dengan cara substitusi, tentukan nilai dari F(2)
Pembahasan
Masukkan nilai x = 2 untuk F(x).
F(x) = 3x3 + 2x − 10
F(2) = 3(2)3 + 2(2) − 10
F(2) = 24 + 4 − 10 = 18

 2) F(x) = 3x3 + 2x − 10.
Dengan cara Horner, tentukan nilai dari F(2)
Pembahasan


3) Diketahui bahwa (x − 1) adalah faktor dari persamaan x3 − 2x2 − 5x + 6 = 0. Tentukan faktor-faktor yang lain!
Pembahasan
x − 1 merupakan faktor dari x3 − 2x2 − 5x + 6 = 0, sehingga x = 1 adalah akar dari persamaan tersebut.
Pemfaktoran dengan horner untuk nilai x = 1

koefisien x2 adalah 1
koefisien x adalah −1
dan 6

Faktor yang didapat :
1x2 − 1x − 6 = 0
x2 − x − 6 = 0

Faktorkan lagi, lebih mudah karena x dalam pangkat dua, diperoleh
x2 − x − 6 = 0
(x + 2)(x − 3) = 0

Jadi selain (x − 1) , faktor-faktor dari x3 − 2x2 − 5x + 6 = 0 adalah (x + 2) dan (x − 3)

4) Diketahui x = 1 adalah akar dari persamaan suku banyak 2x3 − 9x2 + 13x − 6 = 0. Tentukan akar-akar yang lain dari persamaan di atas!
Pembahasan
2x3 − 9x2 + 13x − 6 = 0


2x2 − 7x + 6 = (2x − 3)(x − 2)
2x − 3 = 0
x = 3/2

x − 2 = 0
x = 2

Jadi akar-akar yang lain adalah 3/2 dan 2

5) Diketahui;
2x3 − 9x2 + 13x − 6 = 0

Jika x1, x2 dan x3 adalah akar-akar dari persamaan di atas, tentukan:
a) hasil kali akar-akar
b) jumlah akar-akar
Pembahasan
Ax3 + Bx2 + Cx + D = 0
maka berlaku
a) x1 ⋅x2 ⋅ x3 = − D/A = − (−6)/2 = 6/2 = 3

b) x1 + x2 + x3 = − B/A
= − (−9)/2
= 9/2

6) Diketahui;
2x4 + 5x3 − 11x2 − 20x + 12 = 0

Jika x1, x2 , x3 dan x4 adalahakar-akar dari persamaan di atas, tentukan:
a) hasil kali akar-akar
b) jumlah akar-akar
Pembahasan
Ax4 + Bx3 + Cx2 + Dx + E = 0
maka berlaku
a) x1 ⋅x2 ⋅ x3 ⋅ x4 = E/A =  (12)/2 = 6

b) x1 + x2 + x3 + x4 = − B/A
=  −(5)/2
 =− 5/2

7) Salah satu faktor suku banyak P(x) = x4 −15x2 −10x + n adalah (x + 2) . Tentukan faktor lainnya.. A. x − 4
B. x + 4
C. x + 6
D. x − 6
E. x − 8
Pembahasan
Tentukan lebih dulu nilai n dari suku banyak di soal. Jika x + 2 adalah faktor, maka x = − 2 jika dimasukkan persamaan di atas akan menghasilkan P(x) = 0.

P(x) = x4 −15x2 −10x + n
0 = (−2)4 −15(−2)2 −10(−2) + n
n = 24

Sehingga P(x) secara lengkap adalah
P(x) = x4 −15x2 −10x + 24

Uji pilihan hingga mendapatkan nilai P(x) sama dengan nol
A.  x − 4 → x = 4 → P(x) = (4)4 −15(4)2 −10(4) + 24 = 0
B.  x + 4 → x = − 4 → P(x) = (−4)4 −15(−4)2 −10(−4) + 24 = 80
C.  x + 6 → x = − 6 → P(x) = (−6)4 −15(−6)2 −10(−6) + 24 = 840
dan seterusnya

Terlihat yang menghasilkan P(x) = 0 adalah untuk x = 4, sehingga faktor lainnya adalah (x − 4).

8) Jika f(x) dibagi dengan (x – 2) sisanya 24, sedangkan jika f(x) dibagi dengan (2x – 3) sisanya 20. Jika f(x) dibagi dengan (x – 2) (2x – 3), sisanya adalah....
A. 8x + 8
B. 8x − 8
C. −8x + 8
D. −8x − 8
E. −8x + 6
Pembahasan
Misal sisa pembagian dari f(x) dirumuskan S(x) = ax + b
Dibagi dengan (x – 2) sisanya 24 artinya:
x – 2 = 0
x = 2

S(x) = ax + b
24 = 2a + b ..........(Persamaan 1)

Dibagi dengan (2x – 3) sisanya 20 artinya:
2x – 3 = 0
x = 3/2

S(x) = ax + b
20 = 3/2 a + b ..........(Persamaan 2)

Gabungkan persamaan 1 dan 2
24 = 2a    +  b
20 = 3/2 a +  b
______________ −
4 = 1/2 a
a = 8

24 = 2a + b
24 = 2(8) + b
24 = 16 + b
b = 8

S(x) = 8x + 8

9) Diketahui suku banyak P(x) = 2x4 + ax3 − 3x2 + 5x + b. . Jika P(x) dibagi (x − 1) sisa 11, dibagi (x + 1) sisa -1, maka nilai (2a+ b) =...
A. 13
B. 10
C. 8
D. 7
E. 6
Pembahasan
Untuk (x − 1)
x = 1 → P(x) = 11
2(1)4 + a(1)3 − 3(1)2 + 5(1) + b = 11
2 + a − 3 + 5 + b = 11
a + b = 7 .............(Persamaan 1)

Untuk (x + 1)
x = − 1 → P(x) = − 1
2(−1)4 + a(−1)3 − 3(−1)2 + 5(1) + b = −1
2 − a − 3 − 5 + b = − 1
− a + b = 5 ..........(Persamaan 2)

Dari Persamaan 1 dan 2
a + b = 7
− a + b= 5
__ ____   _ +
2b = 12
b = 12/2 = 6

a + b = 7
a + 6 = 7
a = 1

Sehingga
2a + b = 2(1) + 6 = 8

10) Sisa pembagian suku banyak F(x) = 2x3 − 7x2 + 11x − 4 oleh (2x − 1) adalah....
A. −3
B. −2
C. −1
D. 0
E. 1
Pembahasan
F(x) = 2x3 − 7x2 + 11x − 4 dibagi (2x − 1) sisanya adalah f(1/2).

Sisa = 2(1/2)3 − 7(1/2)2 + 11(1/2) − 4

Suku Banyak

Bentuk Umum

an xn + an – 1 xn – 1 + an – 2 xn – 2 + … + … a2x2 + a1x + a0
keterangan :
n = derajat suku banyak
a0 = konstanta
an, an – 1, an – 2, … = koefisien dari xn, xn – 1, xn – 2, …
Pangkat merupakan bilangan cacah.

Pembagian Suku Banyak

Bentuk Umum
F(x) = P(x).H(x) + S(x)
dimana :
F(x) = suku banyak
P(x) = pembagi
H(x) = hasil bagi
S(x) = sisa

Teorema Sisa

Jika suatu suku banyak F(x) dibagi oleh (x – k) maka sisanya adalah F(k)
Jika pembagi berderajat n maka sisanya berderajat n – 1
Jika suku banyak berderajat m dan pembagi berderajat n, maka hasil baginya berderajat m – n

Metode Pembagian Suku Banyak

contoh :
F(x) = 2x3 – 3x2 + x + 5 dibagi dengan P(x) = 2x2 – x – 1
1. Pembagian Biasa
Screenshot_10
Sehingga hasil baginya: H(X) = x – 1, sisanya S(x) = x + 4
2. Cara Horner/skema
cara ini dapat  digunakan untuk pembagi berderajat 1 atau pembagi yang dapat difaktorkan menjadi pembagi-pembagi berderajat 1
Cara:
  • Tulis koefisiennya saja → harus runtut dari koefisien xn, xn – 1, … hingga konstanta (jika ada variabel yang tidak ada, maka koefisiennya ditulis 0)
Contoh: untuk 4x3 – 1, koefisien-koefisiennya adalah 4, 0, 0, dan -1 (untuk x3, x2, x, dan konstanta)
  • Jika koefisien derajat tertinggi P(x) ≠ 1, maka hasil baginya harus dibagi dengan koefisien derajat tertinggi P(x)
  • Jika pembagi dapat difaktorkan, maka:
Jika pembagi dapat difaktorkan menjadi P1 dan P2, maka S(x) = P1.S2 + S1
Jika pembagi dapat difaktorkan menjadi P1, P2, P3, maka S(x) = P1.P2.S3 + P1.S2 + S1
Jika pembagi dapat difaktorkan menjadi P1, P2, P3, P4, maka S(x) = P1.P2.P3.S4 + P1.P2.S3 + P1.S2 + S1
dan seterusnya
Untuk soal di atas,
P(x) = 2x2 – x – 1 = (2x + 1)(x – 1)
P1: 2x + 1 = 0 → x = –½
P2: x – 1 = 0 → x = 1
Cara Hornernya:
horner
H(x) = 1.x – 1 = x – 1
S(x) = P1.S2 + S1 = (2x + 1).1/2 + 7/2 = x + ½ + 7/2 = x + 4
3. Koefisien Tak Tentu
F(x) = P(x).H(x) + S(x)
Untuk soal di atas, karena F(x) berderajat 3 dan P(x) berderajat 2, maka
H(x) berderajat 3 – 2 = 1
S(x) berderajat 2 – 1 = 1
Jadi, misalkan H(x) = ax + b dan S(x) = cx + d
Maka:
2x3 – 3x2 + x + 5 = (2x2 – x – 1).(ax + b) + (cx + d)
Ruas kanan:
= 2ax3 + 2bx2 – ax2 – bx – ax – b + cx + d
= 2ax3 + (2b – a)x2 + (–b – a + c)x + (–b + d)
Samakan koefisien ruas kiri dan ruas kanan:
x3 → 2 = 2a → a = 2/2 = 1
x2 → –3 = 2b – a → 2b = –3 + a = –3 + 1 = –2 → b = –2/2 = –1
x → 1 = –b – a + c → c = 1 + b + a = 1 – 1 + 1 → c = 1
Konstanta → 5 = –b + d → d = 5 + b = 5 – 1 → d = 4
Jadi:
H(x) = ax + b = 1.x – 1 = x – 1
S(x) = cx + d = 1.x + 4 = x + 4

Teorema Faktor

Suatu suku banyak F(x) mempunyai faktor (x – k) jika F(k) = 0 (sisanya jika dibagi dengan (x – k) adalah 0)
Catatan: jika (x – k) adalah faktor dari F(x) maka k dikatakan sebagai akar dari F(x)

Tips

  1. Untuk mencari akar suatu suku banyak dengan cara Horner, dapat dilakukan dengan mencoba-coba dengan angka dari faktor-faktor konstanta dibagi faktor-faktor koefisien pangkat tertinggi yang akan memberikan sisa = 0. Contohnya :untuk x3 – 2x2 – x + 2 = 0, faktor-faktor konstantanya: ±1, ±2, faktor-faktor koefisien pangkat tertinggi: ±1. Sehingga, angka-angka yang perlu dicoba: ±1 dan ±2untuk 4x3 – 2x2 – x + 2 = 0, faktor-faktor konstantanya: ±1, ±2, faktor-faktor koefisien pangkat tertinggi: ±1, ±2, ±4. Sehingga, angka-angka yang perlu dicoba: ±1, ±2, ±1/2, ±1/4
  2. Jika jumlah koefisien suku banyak = 0, maka pasti salah satu akarnya adalah x = 1.
  3. Jika jumlah koefisien suku di posisi genap = jumlah koefisien suku di posisi ganjil, maka pasti salah satu akarnya adalah x = –1
Perhatikan contoh soal berikut :
Tentukan penyelesaian dari x3 – 2x2 – x + 2 = 0?
Jawab :
Faktor-faktor dari konstantanya, yaitu 2,  adalah ±1 dan ±2 dan faktor-faktor koefisien pangkat tertingginya, yaitu 1, adalah ±1, sehingga angka-angka yang perlu dicoba: ±1 dan ±2
Karena jumlah seluruh koefisien + konstantanya = 0 (1 – 2 – 1 + 2 = 0), maka, pasti x = 1 adalah salah satu faktornya, jadi:
horner2
Jadi x3 – 2x2 – x + 2 = (x – 1)(x2 – x – 2)
= (x – 1)(x – 2)(x + 1)
x = 1   x = 2   x = –1
Jadi himpunan penyelesaiannya: {–1, 1, 2}

Sifat Akar-akar Suku Banyak

Pada persamaan berderajat 3:
ax3 + bx2 + cx + d = 0 akan mempunyai akar-akar x1, x2, x3
dengan sifat-sifat:
  • Jumlah 1 akar: x1 + x2 + x3 = – b/a
  • Jumlah 2 akar: x1.x2 + x1.x3 + x2.x3 = c/a
  • Hasil kali 3 akar: x1.x2.x3 = – d/a
Pada persamaan berderajat 4:
ax4 + bx3 + cx2 + dx + e = 0 akan mempunyai akar-akar x1, x2, x3, x4
dengan sifat-sifat:
  • Jumlah 1 akar: x1 + x2 + x3 + x4 = – b/a
  • Jumlah 2 akar: x1.x2 + x1.x3 + x1.x4 + x2.x3 + x2.x4 + x3.x4 = c/a
  • Jumlah 3 akar: x1.x2.x3 + x1.x2.x4 + x2.x3.x4 = – d/a
  • Hasil kali 4 akar: x1.x2.x3.x4 = e/a
Dari kedua persamaan tersebut, kita dapat menurunkan rumus yang sama untuk persamaan berderajat 5 dan seterusnya
(amati pola:  –b/a, c/a, –d/a , e/a, …)

Pembagian Istimewa

Screenshot_1